ITT BIW takes wraps off $1.5m test chamber

30th October 2018
Posted By : Mick Elliott
ITT BIW takes wraps off $1.5m test chamber

A $1.5 million high pressure, high-temperature chamber for qualification testing of new electrical penetrator systems used in oil and gas wells has been unveiled by ITT BIW Connector Systems. The new test vessel will provide substantial advances in the testing capabilities and services BIW offers customers while helping operators extend product lifetime in the field.

“The chamber not only increases our robust testing capacity, but it also allows us to test much larger samples up to 6 feet (1.8 meters) long at temperatures up to 650oF and pressures as high as 10,000 psi,” said Roger Williams, BIW Connector Systems’ manager of product design and engineering. “There are only a handful of testing chambers like it in the world.”  

BIW Connector Systems uses a highly engineered qualification test program for all downhole products.

To simulate ageing in the downhole environment, BIW engineers utilise a mixture of saturated and aromatic hydrocarbons, mixed with water, steam and gas, commonly nitrogen or carbon dioxide.  

“All testing includes a series of pressure cycles,” Williams said. “It’s our goal to subject our products to the absolute most challenging downhole conditions before they leave our Factory.” 

“The ability to monitor electrical performance while a device is undergoing pressure and temperature cycling has become invaluable to our customers, and this capability is now in high demand,” said John Dutil, BIW Connector Systems vice president and general manager. “Operators want to know what is going on with electrical properties when pressure and temperature variations occur to help ensure longer run-life. None of our competitors can offer this capability.” 

Strategically designed and constructed during a 24-month period, BIW’s new qualification testing chamber is fabricated from a custom engineered, corrosion-resistant steel forging.

A computer control system coordinates 18 independent heaters using input from 56 thermocouple inputs, with active cooling used to reduce cool-down time.

It features more than 36 computer-controlled valves and a fully integrated fluid management system that injects and recovers test fluids.

Advanced safety features and remote monitoring designed into the chamber, which is enclosed by high strength, temperature and steam-resistant blast walls to ensure safety.

You must be logged in to comment

Write a comment

No comments

More from ITT BIW Connector Systems

Sign up to view our publications

Sign up

Sign up to view our downloads

Sign up

EMO Hannover 2019
16th September 2019
Germany Hannover
Engineering Design Show 2019
16th October 2019
United Kingdom Ricoh Arena, Coventry
Maintec 2019
30th October 2019
United Kingdom NEC, Birmingham